#blog2navi()

数字で経営を見るみたいな話

ビックデータ関連が流行って以降、これからはビックデータを使えないと生き残れないとか、データアナリストがもっともセクシーな職業だとか、なんか統計周りの話がにわかに活気ついている。

0.1%の違いに一喜一憂する

しかし、実際の所、経営層が統計やデータ分析しようと考えて、データ分析を始めて見たもの、数値の見方が分からずにいたずらに混乱することが多い。 出てきた数値は誰でも「読める」。しかし、数値の意味や背後にある因果関係を把握するには、訓練が必要だ。

可視化は嘘をつく。

たとえば、イベントを2回行って次のような売り上げ結果が出た。イベント1よりイベント2の方が売り上げが上がった。このグラフから、経営者は、「イベント2の方が効果がある」。イベント2の方を何回もやろう。と判断する。

図示すれば以下のようになる。

graph01.png

しかし、もう一つ情報を書き加えれば、イベント2の方がイベント1より効果があったと言えなくなる。

graph02.png

たとえば次のような図だ。つまり、イベント2の開始直後に給料日が重なった。通常、給料日直後は、懐が暖かいので、売り上げが上がる傾向にある。そうすると、確かにイベント2の時期に売り上げが上がったが、それは単に、給料日直後で売り上げが上がったか、イベント2の効果で売り上げが上がったのか判断がつかない。その場合、因子分析を行って、イベント2の時期に売り上げが増加したのは、「給料」の影響が強いのか、「イベント2」の影響が強いのか、分析しなければならない。

Category: [統計] - 19:14:58

&blog2trackback();

#blog2navi()


添付ファイル: filegraph01.png 5791件 [詳細] filegraph02.png 5787件 [詳細]

トップ   差分 バックアップ リロード   一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2015-02-01 (日) 14:38:24 (1747d)